26 research outputs found

    A new metallization technology for solar cells application

    Get PDF
    This Ph.D. thesis is focused on the development and optimization of front and rear side metallization of industrial silicon solar cells. The commonly adopted screen-printed silver metallization has several well-known issues, such as low contact resistance, moderate bulk conductivity and high cost. The approach of this work allows complete silver replacement, both on the front and the rear sides. The development of such a new technology is divided into several parts, each resulting in appropriate feedback in terms of solar cell operation parameters. A detailed investigation of the aluminum-silicon interdiffusion that occurs during the firing process of screen-printed aluminum layer usually deposited onto the rear of solar cells is reported. This process is very important because it affects solar cell operation and performance through back-surface field passivation. In this study different screen-printing aluminum pastes, differing one from each other in aluminum particle dimensions and glass frit composition, are evaluated in terms of their bulk resistivity, contact resistance to silicon, back surface field depth and solar cell performance. Finally, this study allowed to reveal certain dependences between pastes parameters and their effect on solar cells and to develop useful recommendations for better solar cell performance. In this work, a new metallization technology is based on an electroplating technique, which for a real industrial application, however, has some critical issues as throughput, floor space, quantity of liquid to manage and the necessity to use some masking technique, such as photolithography. These issues are strongly influencing the metallization technology cost, making it not economically convenient respect silver screen-printing technology. For this purpose, the proposed metallization technique is based on a novel dynamic liquid drop/meniscus (DLD/DLM) technique able to solve both issues. In this work DLD/DLM technique is studied for possible application in a new rear side metallization technology for solar cells, allowing localized formation of solder pads without any use of photolithography, limiting the cost of the process mainly to the cost of materials, such as nickel and tin, which are significantly cheaper than a silver counterpart that is currently adopted by the industry. The cost reduction is not a single advantage of the proposed technology. An efficiency improvement of up to 0.5 %abs is obtained due to a better back-surface field conditions. The development of a new front side metallization is based on a new approach which introduces a layer of mesoporous silicon helpful for further creation of nickel-copper electrical contacts to the emitter region of a solar cell. Process conditions of mesoporous silicon formation and further electroplating steps are studied and optimized in terms of contact resistance and adhesion of such a contacts, in order to guarantee a beneficial influence for solar cells fabricated with the new metallization approach. As for combination of both front and rear side metallization technologies, together, they result in complete silver removal from a metallization technology of a solar cell with a feasible efficiency enhancement of up to 1 %abs

    Porous silicon solar cells

    Get PDF
    We developed a new process for the fabrication of crystalline solar cell, based on an ultrathin silicon membrane, taking advantage of porous silicon technology. The suggested architecture allows the costs reduction of silicon based solar cell reusing the same wafer to produce a great number of membranes. The architectures combines the efficiency of crystalline silicon solar cell, with the great absorption of porous silicon, and with a more efficient way to use the material. The new process faces the main challenge to achieve an effective and not expensive passivation of the porous silicon surface, in order to achieve an efficient photovoltaic device. At the same time the process suggests a smart way to selective doping of the macroporous silicon layers despite the through-going pores. © 2015 IEEE. SciVal Topic Prominence  Topic: Porous silicon | Silicon | macroporous silicon Prominence percentile: 66.984  Author keywords nanofabricationporous siliconsilicon nanoelectronicssolar cells Indexed keywords Engineering controlled terms: Crystalline materialsNanoelectronicsNanostructured materialsNanotechnologyPorous siliconSiliconSilicon wafersSolar cells Engineering uncontrolled terms Crystalline silicon solar cellsCrystalline solar cellsMacro porous siliconPhotovoltaic devicesPorous silicon surfacesPorous silicon technologySilicon nanoelectronicsUltrathin silicon membrane Engineering main heading: Silicon solar cells ISBN: 978-146738155-0 Source Type: Conference Proceeding Original language: English DOI: 10.1109/NANO.2015.7388710 Document Type: Conference Paper Sponsors: Nanotechnology Council Publisher: Institute of Electrical and Electronics Engineers Inc. References (9) View in search results format ▻ All Export  Print  E-mail Save to PDF Create bibliography 1 (2012) International Technology Roadmap for Photovoltaics Results 2012. Cited 24 times. ITRPV, Third Edition, Berlin 2012 www.ITRPV.net 2 Lehmann, V., Honlein, W., Stengl, R., Willer, J., Wendt, H. (1992) Verfahren Zur Herstellung Einer Solarzelle Aus Einer Substratscheibe. Cited 6 times. German patent DE4204455C1; Filing date: 29. 01. 3 Brendel, R., Ernst, M. Macroporous Si as an absorber for thin-film solar cells (2010) Physica Status Solidi - Rapid Research Letters, 4 (1-2), pp. 40-42. Cited 22 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/123215552/PDFSTART doi: 10.1002/pssr.200903372 Locate full-text(opens in a new window) View at Publisher 4 Ernst, M., Brendel, R., Ferré, R., Harder, N.-P. Thin macroporous silicon heterojunction solar cells (2012) Physica Status Solidi - Rapid Research Letters, 6 (5), pp. 187-189. Cited 16 times. doi: 10.1002/pssr.201206113 Locate full-text(opens in a new window) View at Publisher 5 Ernst, M., Brendel, R. Macroporous silicon solar cells with an epitaxial emitter (2013) IEEE Journal of Photovoltaics, 3 (2), art. no. 6472253, pp. 723-729. Cited 7 times. doi: 10.1109/JPHOTOV.2013.2247094 Locate full-text(opens in a new window) View at Publisher 6 Ernst, M., Schulte-Huxel, H., Niepelt, R., Kajari-Schröder, S., Brendel, R. Thin crystalline macroporous silicon solar cells with ion implanted emitter (Open Access) (2013) Energy Procedia, 38, pp. 910-918. Cited 2 times. http://www.sciencedirect.com/science/journal/18766102 doi: 10.1016/j.egypro.2013.07.364 Locate full-text(opens in a new window) View at Publisher 7 Nenzi, P., Kholostov, K., Crescenzi, R., Bondarenka, H., Bondarenko, V., Balucani, M. Electrochemically etched TSV for porous silicon interposer technologies (2013) Proceedings - Electronic Components and Technology Conference, art. no. 6575887, pp. 2201-2207. Cited 2 times. ISBN: 978-147990233-0 doi: 10.1109/ECTC.2013.6575887 Locate full-text(opens in a new window) View at Publisher 8 Perticaroli, S., Varlamava, V., Palma, F. Microwave sensing of nanostructured semiconductor surfaces (2014) Applied Physics Letters, 104 (1), art. no. 013110. Cited 3 times. doi: 10.1063/1.4861424 Locate full-text(opens in a new window) View at Publisher 9 De Cesare, G., Caputo, D., Tucci, M. Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures (2012) IEEE Electron Device Letters, 33 (3), art. no. 6142006, pp. 327-329. Cited 28 times. doi: 10.1109/LED.2011.2180356 Locate full-text(opens in a new window) View at Publisher © Copyright 2017 Elsevier B.V., All rights reserved. ◅ Back to results ◅ Previous 3of10 Next ▻  Top of page Metrics Learn more about article metrics in Scopus (opens in a new window)  0 Citations in Scopus 0 Learn more about Field-Weighted Citation Impact Field-Weighted Citation Impact PlumX Metrics Usage, Captures, Mentions, Social Media and Citations beyond Scopus.  Cited by 0 documents Inform me when this document is cited in Scopus: Set citation alert ▻ Set citation feed ▻ Related documents Thin crystalline macroporous silicon solar cells with ion implanted emitter Ernst, M. , Schulte-Huxel, H. , Niepelt, R. (2013) Energy Procedia Multilayer etching for kerf-free solar cells from macroporous silicon Schäfer, S. , Ernst, M. , Kajari-Schröder, S. (2013) Energy Procedia Macroporous silicon solar cells with an epitaxial emitter Ernst, M. , Brendel, R. (2013) IEEE Journal of Photovoltaics View all related documents based on references Find more related documents in Scopus based on: Authors ▻ Keywords ▻ About Scopus What is Scopus Content coverage Scopus blog Scopus API Privacy matters Language 日本語に切り替える 切换到简体中文 切換到繁體中文 Русский язык Customer Service Help Contact us Elsevier Terms and conditions ↗ Privacy policy ↗ Copyright © 2018 Elsevier B.V ↗. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies. RELX Group We developed a new process for the fabrication of crystalline solar cell, based on an ultrathin silicon membrane, taking advantage of porous silicon technology. The suggested architecture allows the costs reduction of silicon based solar cell reusing the same wafer to produce a great number of membranes. The architectures combines the efficiency of crystalline silicon solar cell, with the great absorption of porous silicon, and with a more efficient way to use the material. The new process faces the main challenge to achieve an effective and not expensive passivation of the porous silicon surface, in order to achieve an efficient photovoltaic device. At the same time the process suggests a smart way to selective doping of the macroporous silicon layers despite the through-going pores

    Design and technology for 3D MEMS device for vibration energy harvesting

    No full text
    In this work we present a new concept of a threedimensional vibration power generator made by micro-electromechanical systems (MEMS) technology, which can convert electric energy through transverse mode piezoelectric effect. The presented power generator is based on a long, thick-film, piezoelectric beam configured as a conical helical spring structure. The controlled release metal layer (CRML) MEMS technology has been used to realize the structure from photolithography-defined pattern on a silicon wafer. The advantage of CRML technology is the high repeatability and resolution and its compatibility with back-end of line (BEOL) processes of the integrated circuit (IC) industry. The purpose of the helical structure is also to combine the piezoelectric generator with a conical-helical antenna for RF applications in low-power, autonomous sensors network. The novel construction process of the piezoelectric generator and its structure are presented with finite element method (FEM) simulations to determine its resonant frequencies. This energy-harvesting structure is made enclosing a piezoelectric material between two metal layers. The presented structures operate, as antenna, in the 55-85 GHz frequency band and resonate with mechanical vibrations in the kHz region. These two characteristics are the ideal components for the deployment of miniaturized battery-free low-cost sensors in the emerging 60 GHz band and energy harvesting for power supply

    3D Antenna for GHz application and vibration energy harvesting

    No full text
    In this work we present a new design for a three-dimensional vibration energy harvester, which is made by Micro-Electro-Mechanical Systems (MEMS) technology, and which can convert electric energy through transverse mode piezoelectric effect. The presented power generator is based on a long, thick-film, piezoelectric beam configured as a conical helix structure and located between two metal electrodes. The design of the combined antenna/energy harvester (comvester, from communication and energy harvester) device addresses both electromagnetic and mechanical issues as it radiates electromagnetic energy and converts mechanical energy into electric energy. Both functions are translated directly into dimensional constraints of the structure. In this work, we concentrate on millimeter waves communications in the 60 GHz frequency band because of their availability for low-power CMOS radio circuits. In order to realize comvester on a silicon wafer we used Controlled Release Metal Layer (CRML) technology, which is a transfer layer technology that uses porous silicon as sacrificial material. The advantage of CRML technology is high repeatability and resolution and its compatibility with back-end of line processes of the integrated circuit industry. New type of piezoelectric material consisted of the array of separated vertical polyvinylidene fluoride (PVDF) microrods is suggested. Such periodic microrods structure became possible to realize using the template of the structured macroporous silicon. © 2013 IEEE

    Electroplated contacts and porous silicon for silicon based solar cells applications

    No full text
    In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ohm/sq solar cell emitter formed on p-type silicon sub- strate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 Ohm cm2 on 80 Ohm/sq emitter are achieved

    Electroplated nickel/tin solder pads for rear metallization of solar cells

    No full text
    In this study, we report on the feasibility of formation of nickel/tin solder pads and bus bars directly electroplated onto the aluminum screen-printed rear metallization layer of silicon-based solar cells. A localized wet processing technique via dynamic liquid drop/meniscus is used to perform the electrodeposition procedure. Excellent mechanical and electrical parameters of electroplated contacts are measured, thus proving the reliability of the proposed approach suitable for industrial application. Adhesion of electroplated nickel/tin solder pads is ensured through a two-step electrochemical pretreatment procedure, resulting in mean peel force values ranging from 2.5 to 3.8 N/mm. Electroplating of solder pads directly onto the screen-printed aluminum layer allows us to obtain a full homogeneous back surface field on the solar cell, resulting in an efficiency gain in 0.31-0.48%abs range. Furthermore, the proposed method completely removes the need for silver in the rear-side metallization layer of silicon-based solar cells
    corecore